Fuzzy sets

Defining Fuzzy Sets
    In mathematics a set, by definition, is a collection of things that belong to some definition. Any item either belongs to that set or does not belong to that set. Let us look at another example; the set of tall men. We shall say that people taller than or equal to 6 feet are tall. This set can be represented graphically as follows:

www.mathworks.com
    The function shown above describes the membership of the 'tall' set, you are either in it or you are not in it. This sharp edged membership functions works nicely for binary operations and mathematics, but it does not work as nicely in describing the real world. The membership function makes no distinction between somebody who is 6'1" and someone who is 7'1", they are both simply tall. Clearly there is a significant difference between the two heights. The other side of this lack of disctinction is the difference between a 5'11" and 6' man. This is only a difference of one inch, however this membership function just says one is tall and the other is not tall.
    The fuzzy set approach to the set of tall men provides a much better representation of the tallness of a person. The set, shown below, is defined by a continuously inclining function. 
www.mathworks.com
    The membership function defines the fuzzy set for the possible values underneath of it on the horizontal axis. The vertical axis, on a scale of 0 to 1, provides the membership value of the height in the fuzzy set. So for the two people shown above the first person has a membership of 0.3 and so is not very tall. The second person has a membership of 0.95 and so he is definitely tall. He does not, however, belong to the set of tall men in the way that bivalent sets work; he has a high degree of membership in the fuzzy set of tall men.